Surface analyses on modern and ancient copper based fakes

A. Giumlia-Mair*1 and E. Lucchini2

Over the last two decades, together with the increasing prices in the antique market and the proliferation of private 'hobby collectors', the number of fakes in circulation among antique shops, auctions and even institutions and museums has noticeably increased. So called 'bronzes' seem to be the favourite objects for both fakers and inexperienced collectors. In some cases the fakes are well made, so that often the professional can be fooled by them also. In this paper some examples of modern and ancient fake objects will be discussed.

Keywords: Ancient fakes, Modern fakes, Noble patina, False patina, Artificial patina, Artificially patinated copper alloys, Imitations, Roman series production jewels, Special alloys, Fake coins, XRF, SEM/EDS, XRD, AAS, ICP

Introduction

The borderlines between fakes, imitations, replicas and facsimiles are a matter of intention, for instance, in the case of objects such as the many facsimile and reproductions that circulate in flea markets, trash shops and small 'antiques' shops. Many of them were indeed made with the intention of producing fakes and are sold as ancient objects mainly on the black market and without any documentation.

However, more and more such fakes end up in museums and other institutions, mostly as gifts of well intended private collectors and these have to be identified. In most cases, and mainly for diplomatic reasons, nondestructive methods are required by the people who are responsible at the various institutions in which the suspicious pieces have landed. The examination of the patina by surface analyses such as XRF and SEM/EDS can represent a good solution in various cases and an excellent approach to the problem in more complex situations.

Ancient fakes can be particularly important for the understanding of the value of the various materials and of finished objects in antiquity. Some examples of fake items, normally produced in valuable materials, are discussed in this paper.

Analytical procedure

For the determination of the composition of the different patinae and surface layers, various analytical methods were employed. All objects were first examined by different optical devices with different magnifications and by optical microscopy. X-ray fluorescence spectrometry was mainly employed as the first overall analysis method and in many cases it was also sufficient for the identification of clumsy fakes, such as painted fake patina or for the determination of 'wrong' elements present in both, surface layers and in the bulk metal. As a next step, when the pieces to be analysed were small enough to be introduced into the chamber of a scanning electron microscope (SEM) or when a sample could be taken, an SEM study of the microstructure and of the surface layers was carried out. Particular attention was given to the examination of the structures on sections and to the interface between the various layers. Further, energy dispersive X-ray analysis (EDX) was performed on the microstructural differences visible within the surface layers.

Backscattered electron images were generally very helpful for the determination of the micromorphology and for the identification of the layers on the sections or fractures. In many cases the elemental distribution, as revealed by backscattered electron images, allowed the quick identification of fake patinas.

X-ray diffraction (XRD) analyses were in some cases employed for the identification of crystalline compounds present on the surfaces of the examined pieces. Bulk analyses were performed by atomic absorption spectrometry (AAS) and/or by inductively coupled plasma spectrometry (ICP). For these analyses samples of clean metal were taken with a jeweller drill. Any surface layer and any corrosion visible in the sample were discarded and the clean turnings were weighed, dissolved in aqua regia and diluted as required for the common AAS or ICP procedure.

Noble patina, artificial patina and fake patina

Copper based alloys develop their patina in the soil, i.e. in a damp oxygenated environment. Copper dissolves first along grain boundaries and forms red cuprite (Cu2O), which in the upper layers reacts again with the environment, forming carbonates (malachite, Cu (II) carbonate (CuCO3, Cu (OH)2) or, in drier soil, blue azurite, copper (II) carbonate (2CuCO3, Cu (OH)2). Of
course, if the soil is acidic, the dangerous and very active chlorides (atacamite and paratacamite) can form and these have to be promptly treated. However, the natural patina, which develops on copper alloys and mainly shows in section as an internal thin red layer of cuprite, covered by the well known green surface of carbonates, is the so called noble patina, a stable and attractive protective layer. The noble patina grows between the surface crystals and often, particularly on hammered pieces, also inside the crystals, as intergranular and infragranular corrosion, a natural phenomenon, which is very difficult to imitate.2

Several elements, notably zinc and iron, which do not belong to the original composition of the metal, but are absorbed during burial from the environment, are often present in the corrosion layers, while some of the elements, which originally belonged to the composition of the alloy, can completely disappear from the upper levels and also from the regions immediately under the patina. Therefore, surface analyses of patinated or corroded copper based objects are always to be considered as semi quantitative only, but can be perfectly suited for preliminary examinations and for spotting out fakes. Particularly high zinc percentages, present in the patina, but not in the bulk metal, might also be the consequence of electrochemical cleaning, carried out in the past, by using a zinc plate or foil in an acidic solution.

It is further important to note, that in antiquity, in different periods and in different regions of the ancient world, several artificially patinated copper based alloys, mostly containing low amounts of precious metals (around 0.5–1%) were employed. However these beautiful blue-black, purple-black or silvery-beige surfaces, mostly inlaid with precious metals, are always to be considered as semi quantitative only, but can be perfectly suited for preliminary examinations and for spotting out fakes. Particularly high zinc percentages, present in the patina, but not in the bulk metal, might also be the consequence of electrochemical cleaning, carried out in the past, by using a zinc plate or foil in an acidic solution.

There is in circulation, in flea markets and small antique shops all over Europe, quite a number of ancient fakes which try to imitate ancient objects with a surface layer of fake patina. A whole series of different treatments employed to achieve a credible surface is by now well known. A few examples are listed below.

The loose patina on the surface of a fake ‘early Italic’ statuette, seen on a SEM micrograph (Fig. 1), is produced by treating the metal with acids. Several of these statuettes are made of common leaded brass or of gunmetal and the surface layer looks thin and powdery.

In other cases (Fig. 2) the patina is simply ground malachite, applied on the surface with glue, on the same type of modern copper based alloys.

Other methods, which are quite easily detected by surface analyses, are the (relatively clumsy) use of paint or lacquer in different greenish hues and the application of mixtures of glue, lacquer and even gypsum, mixed with ground up copper carbonates, green paint and dirt, often also partially stained with rust to make the piece look ‘ancient’ (Fig. 3).

A natural looking patina develops very quickly on copper based alloys by exposing the finished objects to rain, wind and polluted air for some months or by covering them with dung. The copper compounds, which develop on the surface are however different from those found in a patina, developed during burial.5,6 Some fakes of this kind are also easy to recognise because of the typical ‘runny’ features of the corrosion.

A further relatively common type of fake patina, most probably coming from Eastern workshops producing fakes, shows a characteristic very dark brown or blackish double layer, containing, among other elements, zinc, lead, sulphur and chlorine. Often there are visible blue-whitish spots on the upper level. In all these cases no visible corrosion penetrates the metal.

Different workshops, which use various techniques, are active in different places and countries. The different patina layers and the various compositions of the bulk metal can, at least in some cases, give an idea of the larger regions in which the fakes might have been produced.

False patinations were also fashionable in the last centuries and were achieved mainly by using chemicals. Handbooks for metal artisans give a variety of recipes for the production of real looking patinae, which can however be easily detected by examination and with simple analyses, especially because of the presence of indicative elements.7,8

Ancient fakes and imitations of costly objects

Fakes of valuable objects are not a modern invention. A fairly large number of ancient fakes have been known for a long time, from the famous Shabaika Stone, which
pretends to report a much older text, but is dated to the time of the 25th Dynasty, 716–702 BC, when the text was carved,9 to the many gold and silver imitations used in particular by Egyptian and Roman alchemists, but still known and employed in the Middle Ages.

The most common fakes, both in antiquity and in modern times, are coins. The example in Fig. 4 is an ancient fake of a Celtic silver drachma, which shows, compared to other similar drachmae, a particularly rough and dark surface. The XRF analysis revealed it to be made of a tin–copper alloy (65% Sn, 24% Cu) with only 1.5% silver and 3.5% lead, while authentic Celtic coins are made of silver with only ca. 2–6% of copper. The high tin alloy is much harder than unalloyed tin and looked convincingly silvery to the eyes of ancient people who did not see silver coins very often.

The artificially patinated objects, as previously mentioned, were luxury items for the rich3,4 and as such, very interesting for fakers. Analyses of ancient items, but also information from ancient Egyptian, Greek and Latin sources10 indicate, that there were fakes (or imitations?) of patinated and inlaid items, produced with alloys that did not contain precious metals.

Recent experiments showed that copper alloys containing small amounts of As and Fe also develop a patina, but the dark layer is not as deep blue- or purple-black as the real Corinthium aes alloys and the patina is friable and not compact.11

A good example is a Roman medical instrument from a physician’s grave at Cologne (Römisch-Germanisches Museum Köln, inv. No. 8675), inlaid with silvery and reddish, dark spotted, wires. The EDS analysis (Fig. 5) showed that the body metal was brass with around 20% zinc, the silvery wire was made of a good silver with only...
around 3% copper, and the reddish wire was copper containing around 3% arsenic (a deliberate addition). Patination experiments demonstrated that, after a chemical bath, copper containing 0.5–1% of arsenic, becomes dark brown with a bluish iridescence. This was most probably the original colour of the inlaid wire.

The question if the studied object was a fake or simply a cheap imitation of a more precious version does not always have a simple answer. In several cases the borderline is extremely difficult to establish, however, finding out more about such ancient fakes or imitations is always worth the effort, because the knowledge about these items can give us more than just the facts and the data about the composition of the various materials. Fakes and, perhaps even more, imitations of costly objects allow us a glimpse into everyday life of ancient man, into the taste of the period and into the value of the materials employed, from gunmetal to debased silver alloys with nickel, to aluminium bronze, show the inventiveness of the fakers. In the present paper only a few examples can be given.

Modern fakes of ancient coins
Fakes of ancient coins are countless and the variety of the materials employed, from gunmetal to debased silver alloys with nickel, to aluminium bronze, show the inventiveness of the fakers. In the present paper only a few examples can be given.

A fake of a silver stater from Metaponto in Magna Graecia, the original of which is dated to the third century BC,14 is for example made of simple tin with an addition of 4% of copper (Fig. 7). The low copper content does not darken the white colour of the metal, but it stabilises the corrosion resistance of tin, which if not alloyed would transform into a whitish powder at 13°C, and hardens the metal enough to imitate the characteristics of silver to the eye of inexperienced buyers, but a simple examination by XRF would immediately reveal the deception.

However, not all fake coins now in circulation were made to deceive. An instance of simple imitations, without any intention of fraud, is the ‘silver’ tetradrachm with the owl and the head of the goddess Athena on the reverse (Fig. 8), produced as a token for his clients by an olive oil merchant in the last century BC,13 made to deceive. An instance of simple imitation, because the materials used are of good quality, with the only exception being the green glass stone. However it is well known from the ancient literature, notably from Pliny,13 that emeralds were highly appreciated in Roman times and that among precious stones they ranked third in value, after diamonds and pearls, but it is quite clear that not many real examples of these rare stones, which came all the way from India, were in circulation. Indeed many Roman jewels are decorated with green stones, but most of them are stones belonging to the quartz group (for example prase or plasma) or are made of glass as in this case. Imitations of emerald were therefore common practice, even for ornaments for which good gold alloys and real pearls were used. In this case these are not fakes or imitations, but series production.

6 SEM micrograph of the green central stone of a Roman earring of the type crotalium, first century AD. The bubbles in the stone show that it is a simple green glass and not prase or plasma (stones of the quartz group). The jewel is a series product, but made with good quality gold and real pearls. (Photo: A. Giumlia-Mair)

7 Modern fake of a silver stater from Metaponto, Magna Graecia, made of simple tin with an addition of 4% of copper. The original coins are dated to third century BC (Photo: A. Giumlia-Mair)
are sold to inexperienced collectors as antiquities. Of course an examination by any surface analysis would easily show, that they are not made of the silver alloy employed in ancient times.

Conclusions

In this paper, some examples of modern fake surface layers were presented and compared with the common types of patina found on ancient objects. The instances presented have shown that the identification of fake *patinae* can be relatively easily carried out by employing common analysis methods, such as XRF, SEM/EDX and, in the case of more sophisticated fakes, by analysing the compounds by XRD.

It is however important to note, that the strange composition of surface layers often do not correspond to the composition of the bulk metal of the objects and that this can be due to conservation treatments carried out in the past.

Ancient fakes can be distinguished from ‘real’ ancient pieces by the same methods. In these cases the composition of the alloys (i.e. bulk analyses, such as AAS and ICP) are mostly necessary for an accurate identification.

Coins are certainly the most common fakes in circulation and a huge variety of imitations of mainly precious alloys have been recognised in the last decades. A comparison with the composition of certain ancient examples is, of course, the easiest way of recognising various types of modern fakes.

Acknowledgements

The authors wish to thank the many colleagues at museums and other institutions, who have put at their disposal the various pieces discussed in the paper: Dr H. Hellenkemper, Dr Ute Klatt, Köln, Dr Franca Scotti, Soprintendente Archeologico della Regione Friuli-Venezia Giulia, Trieste and Dr Maurizio Buora, Civici Musei di Udine.

References